SUBTROCHANTERIC FEMORAL FRACTURE AND DYNAMIC CONDYLAR SCREW INSTITUTIONAL STUDY

Vikram Patidar¹, Pankaj Kumar Mishra², Rahul Choudhary³
¹- Senior resident at Department of orthopaedics, M.G.M.M.C Indore M.P.
²- Assistant professor at Department of orthopaedics, G.M.C Bhopal M.P.
³- Senior consultant at private sector Indore M.P.

Abstract:
Subtrochanteric fracture accounts for 10-15% of all fractures, 10-34% of all hip fractures and 7-10% of proximal femoral fractures. The main aim of subtrochanteric femur fracture management is restoration of optimal function, early rehabilitation in the shortest time by the most reliable and the safest method in our hand. This prospective study aimed to assess the functional outcome of subtrochanteric femur fractures fixed with dynamic condylar screw. Patients were selected as per our inclusion criteria and follow up visits were planned at the interval of 4 weeks for a minimum of 10 months. Union was seen within 20 weeks in 15 patients (68.2%) and within 28 weeks in 5 of the patients (22.7%) another 2 patients (9%) took average 2 weeks for union. Use of DCS for fixation of subtrochanteric femur fracture gives variable functional outcome especially in Seinsheimer type IIIA subtype. It took longer operative time, more blood loss which accounts for higher infection rate and more time to union, need to be randomized study in large study group to analysis outcome of DCS in subtrochanteric femur fracture.

Keywords: Sub trochanteric femur, interlocking nail, dynamic condylar screw, compression plate.
Introduction

Fractures of the proximal femur are relatively common injuries in adults. The incidence of fractures of the proximal femur is increasing.1 These fractures are burden to both society and individual. They may be caused by either low or high energy trauma.2 Subtrochanteric fractures typically occur in the proximal femur from the inferior aspect of the lesser trochanter to a distance of about 5 cm distally. Subtrochanteric fracture accounts for 10-15% of all fractures, 10-34% of all hip fractures and 7-10% of proximal femoral fractures.3 Subtrochanteric fractures are difficult to treat because most fractures are unstable and cortical diaphyseal bone is involved which has poor vascularity & poor healing capacity as compared to cancellous bone of trochanteric area. There is high stress in this area and powerful muscles pull acting in different directions therefore nonoperative treatment often fails.3-5 Earlier, treatment options were few and less effective as compared to presently available various modalities of treatment. Early forms of treatment included casting, splinting and traction. Now the subtrochanteric fractures are best treated surgically in most cases. The treatment has evolved and changed over a period of time, from conservative to operative, from extramedullary devices to intramedullary devices, from open reduction and fixation to newer minimally invasive techniques. Even with the well developed armamentarium of fixation devices available with the modern day trauma surgeon, the amount of spatial complexity seen in these fractures frequently challenges even the best. The main aim of subtrochanteric femur fracture management is restoration of optimal function in the shortest time by the most reliable and the safest method in our hand. The treatment modalities in vogue today are extramedullary devices like dynamic hip screw, dynamic condylar screw, locking compression plate, condylar blade plate and intramedullary devices like Gamma Nail, interlocking intramedullary nail, proximal femoral nail.6-10 Among the extramedullary devices, condylar blade plate insertion is technically demanding, so this study is undertaken to determine the functional outcome of fixation in series of subtrochanteric femur fracture with dynamic condylar screw.

Material And Methods

This prospective study aimed to assess the functional outcome of subtrochanteric femur fractures fixed with dynamic condylar screw was conducted. Patients were selected as per our inclusion criteria like normal femoral anatomy which allowed osteosynthesis without compound subtrochanteric femur fractures in skeletally mature patients. Follow up visits were planned at the interval of 4 weeks for a minimum of 10 months. On each visit, clinical examination was done and radiographs were procured and data regarding infection, pain, activity of daily living, union, screw back out and implant failure were recorded.

Observations And Results

This prospective study was carried out between January 2015 to December 2016. During the study period, out of all the patients of subtrochanteric femur fracture admitted, those who fulfilled the inclusion criterion and consented for the study were enrolled. 4 patients were lost to follow up so the final analysis comprises of 22 patients. The mean age of the patient was 43.3 years with male to female ration of 2.1: 1. In present study, road traffic accident (54.5 %) was the most leading cause of injury. In older age group, the usual mode of trauma was trivial and fall on ground (31.8 %).
The most common fracture in the present study as per Seinsheimer Classification was Type IIIA (63.6%). The mean duration between injury & surgery was 9.3 days of the 22 patients. Five patients (22.7%) had associated bony injury. Out of the 22 patients, 5 patients had hypertension (22.7%) and 3 patients had diabetes mellitus (13.6%). The mean duration of surgery was 40 minutes. All the 22 patients were followed up for an average period of 11.2 months (Range: 10 months to 16 months). At final follow-up, 6 out of 22 patients (27.3%) had occasional mild to moderate pain for which no medication was required. 8 patients (36.35%) had mild to moderate pain daily which necessitated regular use of analgesics. Patients (36.35%) report no pain at final follow-up.

Union was seen within 20 weeks in 15 patients (68.2%) and within 28 weeks in 5 the patients (22.7%). In 1 patient it took 32 weeks (4.5%) and in 1 patient it took 40 weeks (4.5%) to unite. Average time to union was around 21.8 weeks.

Table No. 4

<table>
<thead>
<tr>
<th>Weeks to Union</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 20 weeks</td>
<td>16</td>
</tr>
<tr>
<td>21 to 28 weeks</td>
<td>4</td>
</tr>
<tr>
<td>29 to 36 weeks</td>
<td>1</td>
</tr>
<tr>
<td>After 36 weeks</td>
<td>1</td>
</tr>
</tbody>
</table>

Result according to fracture type

In present study there were no patients with Seinsheimer type I, IIA and type V. In type IIB there were 2 patients. In type IIC there were 2 patients. In type IIIA there were 14 patients. In type IIIB there were 3 patients. In type IV there was only 1 patient.

Table No 5

<table>
<thead>
<tr>
<th>Harris Hip Score</th>
<th>Result</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 70</td>
<td>Poor</td>
<td>3</td>
</tr>
<tr>
<td>70 – 79</td>
<td>Fair</td>
<td>4</td>
</tr>
<tr>
<td>80 – 89</td>
<td>Good</td>
<td>14</td>
</tr>
<tr>
<td>> 90</td>
<td>Excellent</td>
<td>1</td>
</tr>
</tbody>
</table>

Discussion

Average age of patients in present study was 43.3 years (range 28 – 68 years). The recorded average age of the patients is lower as compared to the western literature. In the present study 15 patients (68%) out of 22 patients were males and 7 were female patients (32%). Males sustained these injuries more frequently as compared to females. The available literature also shows higher male predominance. In present study RTA (54.4%) was the principal mode of trauma. The rest of the patients had injury following trivial trauma and fall (31.8%) which was common in elderly patients. Rest (13.7%) of patients suffered from fall from height. In the series of R. V. Velasco et al (42 %) suffered
from RTA and in rest (58%), injury was caused either due to trivial and fall from height. RTA was principal mode in present series due to undisciplined traffic in our country.

Table No. 06
Comparison of fracture pattern in different series as per Seinsheimer classification

<table>
<thead>
<tr>
<th>Seinsheimer Classification</th>
<th>Seinsheimer study(^\text{17}) (1978)</th>
<th>Doboz(i) Study(^\text{18}) (1986)</th>
<th>Roshan D. Haria Study(^\text{19}) (2000)</th>
<th>Present series</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>II A</td>
<td>01</td>
<td>05</td>
<td>04</td>
<td>00</td>
</tr>
<tr>
<td>II B</td>
<td>07</td>
<td>19</td>
<td>08</td>
<td>02</td>
</tr>
<tr>
<td>II C</td>
<td>01</td>
<td>06</td>
<td>04</td>
<td>02</td>
</tr>
<tr>
<td>III A</td>
<td>18</td>
<td>13</td>
<td>09</td>
<td>14</td>
</tr>
<tr>
<td>III B</td>
<td>04</td>
<td>08</td>
<td>11</td>
<td>03</td>
</tr>
<tr>
<td>IV</td>
<td>07</td>
<td>08</td>
<td>28</td>
<td>01</td>
</tr>
<tr>
<td>V</td>
<td>08</td>
<td>20</td>
<td>11</td>
<td>00</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>79</td>
<td>75</td>
<td>22</td>
</tr>
</tbody>
</table>

The most common fracture pattern in present study is Seinsheimer type IIIA. In Seinsheimer study\(^\text{14}\) it was type III A, in Doboz\(i\) study\(^\text{15}\) it was type V and in Roshan D. Haria study\(^\text{16}\) it is IV. So different literatures describe different types of common fractures. Present study has similarity with the Seinsheimer study. The Injury operation interval in our study was 9.2 day as compare to other western study, was more due to other waiting patients, delay in arrangement of implants, our being a and few elderly patients who had to undergo more detailed preoperative work up.

At final follow-up, 6 out of 22 patients (27.3%) had occasional mild to moderate pain for which no medication was required. 8 patients (36.35%) had daily mild to moderate pain which necessitated regular use of analgesics. So at final follow up (63.65%) had complaints of pain. 8 patients (36.35%) reported no pain at final follow up. Ahrengart et al in\(^\text{16}\) his series had pain in 26% patients and Saudan et al\(^\text{17}\) had pain in 21% patients at final follow up. Compared with available literature, we had higher percentage of patients complaining pain at final follow up. Sadowski et al\(^\text{18}\) reported 31% rate of implant failure with the Dynamic condylar screw in 19 patients. Haidukewych et al\(^\text{19}\) retrospectively analyzed results of fixation with angled blade plate, dynamic condylar screw and sliding hip screw in forty seven patients (AO/OTA type 31A3.1 to 31A3.3). In 2001 they reported implant failure rates of 13%, 30% and 56% respectively. The implant failure (13.6%) in present series consisted of backing out of screw in 2 patients and broken plate in 1 patient. Existing literature has wide variation in the magnitude of implant failure. The reasons for this are multi factorial including poor implant quality and poor patient compliance.

In western study Yong et al and Rahme et al\(^\text{20},\text{21}\) infection rate was 3.5%, and we had 3 case of superficial infection and 1 case of deep infection. The rates of infection with open surgery for unstable subtrochanteric and intertrochanteric fractures have stayed consistently around 3 to 5% in various studies. In present series we had higher rate of infection (18.1%) that can be contributed to poor infrastructure of Operation theatre, poor hygiene as compared to western world and more injury operation interval and more duration of surgery.

In present series average time to union was around 21.8 weeks. In the series of Kim SY et al\(^\text{22}\) he reported an average union time of 20 weeks. The average time to union was higher in present series. It may be due to poor nutritional status of patients in our country.

In present series 1 patient (4.5%) had non union as compared to Warwick et al\(^\text{23}\) who had 2.8% of non union, Kulkarni and Moran et al\(^\text{24}\) who had 22.4% of non union and Nungu et al\(^\text{11}\) who had 20% non union. So the rate of non union was comparable with the available literature.

At the final follow up, the average Harris hip score was 81 as compared to Rohilla et al\(^\text{25}\) who had mean score of 88. In fracture type IIB, results were good in 1 patient (50%) and poor in 1 patient (50%). In fracture type IIC, result was good in 1 patient (50%) and fair in 1 patient (50%). In fracture type IIIA, result was excellent in 1 patient (7.1%), good in 9 patients (62.3%), fair in 3 patients (21.4%) and poor in 1 patient (7.1%). In fracture type IIIB, result was good in all 3 patients (100%). In fracture type IV, result was poor in 1 patient (100%). In present series the results were- poor in 3 patients (13.6%), fair in 4 patients(18.2%), good in 14 patients(63.6%) and excellent in 1 patient(4.5%). Rohilla et al\(^\text{25}\) had Excellent results in 28% and Good
in 72%. He had none patients with poor or fair results. Celebi et al26 in his series of 21 patients had excellent result in 14 patients (66.7%), good in 7 patients (33.4%) and none with fair or poor results.

Summary & conclusion

Use of DCS for fixation of subtrochanteric femur fracture gives excellent to good functional outcome especially in Seinsheimer type IIIA subtype. DCS fixation has a longer operative time, more blood loss which accounts for higher infection rate and more time to union. DCS fixation has a higher complication rate. Though it is a non randomized study with small sample size and short follow up, we recommend analysis with randomized trial in enough sample size for use of DCS for subtrochanteric femur fracture.

References

23. Rahme DM, Harris IA: Intramedullary nailing versus fixed angle blade plating for subtrochanteric femoral fractures: a prospective randomized controlled trial. J Or-

